Amplification of bacteria-induced platelet activation is triggered by FcγRIIA, integrin αIIbβ3, and platelet factor 4.
نویسندگان
چکیده
Bacterial adhesion to platelets is mediated via a range of strain-specific bacterial surface proteins that bind to a variety of platelet receptors. It is unclear how these interactions lead to platelet activation. We demonstrate a critical role for the immune receptor FcγRIIA, αIIbβ3, and Src and Syk tyrosine kinases in platelet activation by Staphylococcus aureus, Streptococcus sanguinis, Streptococcus gordonii, Streptococcus oralis, and Streptococcus pneumoniae. FcγRIIA activation is dependent on immunoglobulin G (IgG) and αIIbβ3 engagement. Moreover, feedback agonists adenosine 5'-diphosphate and thromboxane A2 are mandatory for platelet aggregation. Additionally, platelet factor 4 (PF4) binds to bacteria and reduces the lag time for aggregation, and gray platelet syndrome α-granule-deficient platelets do not aggregate to 4 of 5 bacterial strains. We propose that FcγRIIA-mediated activation is a common response mechanism used against a wide range of bacteria, and that release of secondary mediators and PF4 serve as a positive feedback mechanism for activation through an IgG-dependent pathway.
منابع مشابه
Bacteria exploit platelets.
In this issue of Blood, Arman et al show that bacteria use immunoglobulin G (IgG) from plasma to engage platelet surface receptors FcγRIIA and integrin αIIbβ3 to induce platelet activation, which is further facilitated by platelet factor 4 (PF4).
متن کاملHuman platelet activation by Escherichia coli: roles for FcγRIIA and integrin αIIbβ3
Gram-negative Escherichia coli cause diseases such as sepsis and hemolytic uremic syndrome in which thrombotic disorders can be found. Direct platelet-bacterium interactions might contribute to some of these conditions; however, mechanisms of human platelet activation by E. coli leading to thrombus formation are poorly understood. While the IgG receptor FcγRIIA has a key role in platelet respon...
متن کاملPlatelet Activation and Thrombus Formation over IgG Immune Complexes Requires Integrin αIIbβ3 and Lyn Kinase
IgG immune complexes contribute to the etiology and pathogenesis of numerous autoimmune disorders, including heparin-induced thrombocytopenia, systemic lupus erythematosus, rheumatoid- and collagen-induced arthritis, and chronic glomerulonephritis. Patients suffering from immune complex-related disorders are known to be susceptible to platelet-mediated thrombotic events. Though the role of the ...
متن کاملPlatelet 12-LOX is essential for FcγRIIa-mediated platelet activation.
Platelets are essential in maintaining hemostasis following inflammation or injury to the vasculature. Dysregulated platelet activity often results in thrombotic complications leading to myocardial infarction and stroke. Activation of the FcγRIIa receptor leads to immune-mediated thrombosis, which is often life threatening in patients undergoing heparin-induced thrombocytopenia or sepsis. Inhib...
متن کاملHuman platelet activation by Escherichia coli
Gram-negative Escherichia coli cause diseases such as sepsis and hemolytic uremic syndrome in which thrombotic disorders can be found. Direct platelet–bacterium interactions might contribute to some of these conditions; however, mechanisms of human platelet activation by E. coli leading to thrombus formation are poorly understood. While the IgG receptor FcγRIIA has a key role in platelet respon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 123 20 شماره
صفحات -
تاریخ انتشار 2014